Up

sparktk pca

Functions

def load(

path, tc=<class 'sparktk.arguments.implicit'>)

load PcaModel from given path

def train(

frame, columns, mean_centered=True, k=None)

Creates a PcaModel by training on the given frame

Parameters:
frame(Frame):A frame of training data.
columns(str or list[str]):Names of columns containing the observations for training.
mean_centered(bool):Whether to mean center the columns.
k(int):Principal component count. Default is the number of observation columns.

Returns(PcaModel): The trained PCA model

Classes

class PcaModel

Princiapl Component Analysis Model

Example:
>>> frame = tc.frame.create([[2.6,1.7,0.3,1.5,0.8,0.7],
...                          [3.3,1.8,0.4,0.7,0.9,0.8],
...                          [3.5,1.7,0.3,1.7,0.6,0.4],
...                          [3.7,1.0,0.5,1.2,0.6,0.3],
...                          [1.5,1.2,0.5,1.4,0.6,0.4]],
...                         [("1", float), ("2", float), ("3", float), ("4", float), ("5", float), ("6", float)])
-etc-



>>> frame.inspect()
[#]  1    2    3    4    5    6
=================================
[0]  2.6  1.7  0.3  1.5  0.8  0.7
[1]  3.3  1.8  0.4  0.7  0.9  0.8
[2]  3.5  1.7  0.3  1.7  0.6  0.4
[3]  3.7  1.0  0.5  1.2  0.6  0.3
[4]  1.5  1.2  0.5  1.4  0.6  0.4

>>> model = tc.models.dimreduction.pca.train(frame, ['1','2','3','4','5','6'], mean_centered=True, k=4)

>>> model.columns
[u'1', u'2', u'3', u'4', u'5', u'6']

>>> model.column_means
[2.92, 1.48, 0.4, 1.3, 0.7, 0.52]


>>> model.singular_values
[1.804817009663242, 0.8835344148403884, 0.7367461843294286, 0.15234027471064396]


>>> model.right_singular_vectors
[[-0.9906468642089336, 0.11801374544146298, 0.02564701035332026, 0.04852509627553534], [-0.07735139793384983, -0.6023104604841426, 0.6064054412059492, -0.4961696216881456], [0.028850639537397756, 0.07268697636708586, -0.24463936400591005, -0.17103491337994484], [0.10576208410025367, 0.5480329468552814, 0.7523059089872701, 0.2866144016081254], [-0.024072151446194616, -0.30472267167437644, -0.011259366445851784, 0.48934541040601887], [-0.00617295395184184, -0.47414707747028795, 0.0753345822621543, 0.6329307498105843]]



>>> predicted_frame = model.predict(frame, mean_centered=True, t_squared_index=True, columns=['1','2','3','4','5','6'], k=3)
-etc-

>>> predicted_frame.inspect()
[#]  1    2    3    4    5    6    p_1              p_2
===================================================================
[0]  1.5  1.2  0.5  1.4  0.6  0.4    1.44498618058   0.150509319195
[1]  2.6  1.7  0.3  1.5  0.8  0.7   0.314738695012  -0.183753549226
[2]  3.5  1.7  0.3  1.7  0.6  0.4  -0.549024749481   0.235254068619
[3]  3.3  1.8  0.4  0.7  0.9  0.8  -0.471198363594  -0.670419608227
[4]  3.7  1.0  0.5  1.2  0.6  0.3  -0.739501762517   0.468409769639
<BLANKLINE>
[#]  p_3              t_squared_index
=====================================
[0]  -0.163359836968   0.719188122813
[1]   0.312561560113   0.253649649849
[2]   0.465756549839   0.563086507007
[3]  -0.228746130528   0.740327252782
[4]  -0.386212142456   0.723748467549


>>> model.save('sandbox/pca1')

>>> model2 = tc.load('sandbox/pca1')

>>> model2.k
4

>>> predicted_frame2 = model2.predict(frame, mean_centered=True, t_squared_index=True, columns=['1','2','3','4','5','6'], k=3)

>>> predicted_frame2.inspect()
[#]  1    2    3    4    5    6    p_1              p_2
===================================================================
[0]  1.5  1.2  0.5  1.4  0.6  0.4    1.44498618058   0.150509319195
[1]  2.6  1.7  0.3  1.5  0.8  0.7   0.314738695012  -0.183753549226
[2]  3.5  1.7  0.3  1.7  0.6  0.4  -0.549024749481   0.235254068619
[3]  3.3  1.8  0.4  0.7  0.9  0.8  -0.471198363594  -0.670419608227
[4]  3.7  1.0  0.5  1.2  0.6  0.3  -0.739501762517   0.468409769639
<BLANKLINE>
[#]  p_3              t_squared_index
=====================================
[0]  -0.163359836968   0.719188122813
[1]   0.312561560113   0.253649649849
[2]   0.465756549839   0.563086507007
[3]  -0.228746130528   0.740327252782
[4]  -0.386212142456   0.723748467549


>>> canonical_path = model.export_to_mar("sandbox/Kmeans.mar")

Ancestors (in MRO)

  • PcaModel
  • sparktk.propobj.PropertiesObject
  • __builtin__.object

Instance variables

var column_means

var columns

var k

var mean_centered

var right_singular_vectors

var singular_values

Methods

def __init__(

self, tc, scala_model)

def export_to_mar(

self, path)

Exports the trained model as a model archive (.mar) to the specified path

Parameters:
path(str):Path to save the trained model

Returns(str): Full path to the saved .mar file

def predict(

self, frame, columns=None, mean_centered=None, k=None, t_squared_index=False)

Predicts the labels for the observation columns in the given input frame. Creates a new frame with the existing columns and a new predicted column.

Parameters:
frame(Frame):Frame used for predicting the values
columns(List[str]):Names of the observation columns.
mean_centered(boolean):whether to mean center the columns. Default is true
k(int):the number of principal components to be computed, must be <= the k used in training. Default is the trained k
t_squared_index(boolean):whether the t-square index is to be computed. Default is false

Returns(Frame): A new frame containing the original frame's columns and a prediction column

def save(

self, path)

def to_dict(

self)

def to_json(

self)