Up

sparktk.models.regression.random_forest_regressor module

# vim: set encoding=utf-8

#  Copyright (c) 2016 Intel Corporation 
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

from sparktk.loggers import log_load; log_load(__name__); del log_load
from sparktk.propobj import PropertiesObject
from sparktk import TkContext
import os

__all__ = ["train", "load", "RandomForestRegressorModel"]

def train(frame,
          value_column,
          observation_columns,
          num_trees = 1,
          impurity = "variance",
          max_depth = 4,
          max_bins = 100,
          seed = None,
          categorical_features_info = None,
          feature_subset_category = None):
    """
    Creates a Random Forest Regressor Model by training on the given frame

    Parameters
    ----------

    :param frame: (Frame) frame frame of training data
    :param value_column: (str) Column name containing the value for each observation
    :param observation_columns: (list(str)) Column(s) containing the observations
    :param num_trees: (int) Number of tress in the random forest. Default is 1
    :param impurity: (str) Criterion used for information gain calculation. Default value is "variance".
    :param max_depth: (int) Maximum depth of the tree. Default is 4
    :param max_bins: (int) Maximum number of bins used for splitting features. Default is 100
    :param seed: (Optional(int)) Random seed for bootstrapping and choosing feature subsets. Default is a randomly chosen seed
    :param categorical_features_info: (Optional(Dict(Int -> Int)) Arity of categorical features. Entry (n-> k) indicates that feature 'n' is categorical
                                   with 'k' categories indexed from 0:{0,1,...,k-1}
    :param feature_subset_category: (Optional(str)) Number of features to consider for splits at each node.
                                 Supported values "auto","all","sqrt","log2","onethird".
                                 If "auto" is set, this is based on num_trees: if num_trees == 1, set to "all"
                                 ; if num_trees > 1, set to "onethird"

    :return: (RandomForestRegressorModel) The trained random forest regressor model

    Notes
    -----
    Random Forest is a supervised ensemble learning algorithm used to perform regression. A Random Forest
    Regressor model is initialized, trained on columns of a frame, and used to predict the value of each
    observation in the frame. This model runs the MLLib implementation of Random Forest. During training,
    the decision trees are trained in parallel. During prediction, the average over-all tree's predicted
    value is the predicted value of the random forest.

    """
    if frame is None:
        raise ValueError("frame cannot be None")

    tc = frame._tc
    _scala_obj = get_scala_obj(tc)
    seed = int(os.urandom(2).encode('hex'), 16) if seed is None else seed
    scala_model = _scala_obj.train(frame._scala,
                                   value_column,
                                   tc.jutils.convert.to_scala_list_string(observation_columns),
                                   num_trees,
                                   impurity,
                                   max_depth,
                                   max_bins,
                                   seed,
                                   __get_categorical_features_info(tc, categorical_features_info),
                                   tc.jutils.convert.to_scala_option(feature_subset_category))

    return RandomForestRegressorModel(tc, scala_model)


def __get_categorical_features_info(tc, c):
    if c is not None:
        c = tc.jutils.convert.to_scala_map(c)
    return tc.jutils.convert.to_scala_option(c)


def load(path, tc=TkContext.implicit):
    """load RandomForestRegressorModel from given path"""
    TkContext.validate(tc)
    return tc.load(path, RandomForestRegressorModel)


def get_scala_obj(tc):
    """Gets reference to the scala object"""
    return tc.sc._jvm.org.trustedanalytics.sparktk.models.regression.random_forest_regressor.RandomForestRegressorModel


class RandomForestRegressorModel(PropertiesObject):
    """
    A trained Random Forest Regressor model

    Example
    -------

        >>> frame = tc.frame.create([[1,19.8446136104,2.2985856384],[1,16.8973559126,2.6933495054],
        ...                          [1,5.5548729596,2.7777687995],[0,46.1810010826,3.1611961917],
        ...                          [0,44.3117586448,3.3458963222],[0,34.6334526911,3.6429838715]],
        ...                          [('Class', int), ('Dim_1', float), ('Dim_2', float)])

        >>> frame.inspect()
        [#]  Class  Dim_1          Dim_2
        =======================================
        [0]      1  19.8446136104  2.2985856384
        [1]      1  16.8973559126  2.6933495054
        [2]      1   5.5548729596  2.7777687995
        [3]      0  46.1810010826  3.1611961917
        [4]      0  44.3117586448  3.3458963222
        [5]      0  34.6334526911  3.6429838715

        >>> model = tc.models.regression.random_forest_regressor.train(frame,
        ...                                                                'Class',
        ...                                                                ['Dim_1', 'Dim_2'],
        ...                                                                num_trees=1,
        ...                                                                impurity="variance",
        ...                                                                max_depth=4,
        ...                                                                max_bins=100)

        >>> predict_frame = model.predict(frame, ['Dim_1', 'Dim_2'])

        >>> predict_frame.inspect()
        [#]  Class  Dim_1          Dim_2         predicted_value
        ========================================================
        [0]      1  19.8446136104  2.2985856384                1.0
        [1]      1  16.8973559126  2.6933495054                1.0
        [2]      1   5.5548729596  2.7777687995                1.0
        [3]      0  46.1810010826  3.1611961917                0.0
        [4]      0  44.3117586448  3.3458963222                0.0
        [5]      0  34.6334526911  3.6429838715                0.0

        >>> model.save("sandbox/randomforestregressor")

        >>> restored = tc.load("sandbox/randomforestregressor")

        >>> restored.value_column == model.value_column
        True

        >>> restored.seed == model.seed
        True

        >>> set(restored.observation_columns) == set(model.observation_columns)
        True

    The trained model can also be exported to a .mar file, to be used with the scoring engine:

        >>> canonical_path = model.export_to_mar("sandbox/rfRegressor.mar")


    """

    def __init__(self, tc, scala_model):
        self._tc = tc
        tc.jutils.validate_is_jvm_instance_of(scala_model, get_scala_obj(tc))
        self._scala = scala_model

    @staticmethod
    def _from_scala(tc, scala_model):
        """Loads a random forest regressor model from a scala model"""
        return RandomForestRegressorModel(tc, scala_model)

    @property
    def value_column(self):
        """column containing the values used for model training"""
        return self._scala.valueColumn()

    @property
    def observation_columns(self):
        """observation columns used for model training"""
        return self._tc.jutils.convert.from_scala_seq(self._scala.observationColumns())

    @property
    def num_trees(self):
        """number of trees in the trained model"""
        return self._scala.numTrees()

    @property
    def impurity(self):
        """impurity value of the trained model"""
        return self._scala.impurity()

    @property
    def max_depth(self):
        """maximum depth of the trained model"""
        return self._scala.maxDepth()

    @property
    def max_bins(self):
        """maximum bins in the trained model"""
        return self._scala.maxBins()

    @property
    def seed(self):
        """seed used during training of the model"""
        return self._scala.seed()

    @property
    def categorical_features_info(self):
        """categorical feature dictionary used during model training"""
        s = self._tc.jutils.convert.from_scala_option(self._scala.categoricalFeaturesInfo())
        if s:
            return self._tc.jutils.convert.scala_map_to_python(s)
        return None

    @property
    def feature_subset_category(self):
        """feature subset category of the trained model"""
        return self._tc.jutils.convert.from_scala_option(self._scala.featureSubsetCategory())

    def predict(self, frame, columns=None):
        """
        Predict the values for the data points.

        Predict the values for a test frame using trained Random Forest Classifier model, and create a new frame revision
        with existing columns and a new predicted value's column.

        Parameters
        ----------

        :param frame: (Frame) A frame whose labels are to be predicted. By default, predict is run on the same columns
                      over which the model is trained.
        :param columns: (Optional(list[str])) Column(s) containing the observations whose labels are to be predicted.
                        By default, we predict the labels over columns the Random Forest model was trained on.
        :return: (Frame) A new frame consisting of the existing columns of the frame and a new column with predicted
                 value for each observation.
        """

        c = self.__columns_to_option(columns)
        from sparktk.frame.frame import Frame
        return Frame(self._tc,self._scala.predict(frame._scala, c))

    def __columns_to_option(self, c):
        if c is not None:
            c = self._tc.jutils.convert.to_scala_list_string(c)
        return self._tc.jutils.convert.to_scala_option(c)

    def save(self, path):
        """
        Save the trained model to path

        Parameters
        ----------

        :param path: (str) Path to save
        """
        self._scala.save(self._tc._scala_sc, path)

    def export_to_mar(self, path):
        """
        Exports the trained model as a model archive (.mar) to the specified path.

        Parameters
        ----------

        :param path: (str) Path to save the trained model
        :return: (str) Full path to the saved .mar file

        """

        if not isinstance(path, basestring):
            raise TypeError("path parameter must be a str, but received %s" % type(path))

        return self._scala.exportToMar(self._tc._scala_sc, path)

del PropertiesObject

Functions

def load(

path, tc=<class 'sparktk.arguments.implicit'>)

load RandomForestRegressorModel from given path

def load(path, tc=TkContext.implicit):
    """load RandomForestRegressorModel from given path"""
    TkContext.validate(tc)
    return tc.load(path, RandomForestRegressorModel)

def train(

frame, value_column, observation_columns, num_trees=1, impurity='variance', max_depth=4, max_bins=100, seed=None, categorical_features_info=None, feature_subset_category=None)

Creates a Random Forest Regressor Model by training on the given frame

Parameters:
frame(Frame):frame frame of training data
value_column(str):Column name containing the value for each observation
observation_columns(list(str)):Column(s) containing the observations
num_trees(int):Number of tress in the random forest. Default is 1
impurity(str):Criterion used for information gain calculation. Default value is "variance".
max_depth(int):Maximum depth of the tree. Default is 4
max_bins(int):Maximum number of bins used for splitting features. Default is 100
seed(Optional(int)):Random seed for bootstrapping and choosing feature subsets. Default is a randomly chosen seed
categorical_features_info(Optional(Dict(Int -> Int)):Arity of categorical features. Entry (n-> k) indicates that feature 'n' is categorical with 'k' categories indexed from 0:{0,1,...,k-1}
feature_subset_category(Optional(str)):Number of features to consider for splits at each node. Supported values "auto","all","sqrt","log2","onethird". If "auto" is set, this is based on num_trees: if num_trees == 1, set to "all" ; if num_trees > 1, set to "onethird"

Returns(RandomForestRegressorModel): The trained random forest regressor model

Notes:

Random Forest is a supervised ensemble learning algorithm used to perform regression. A Random Forest Regressor model is initialized, trained on columns of a frame, and used to predict the value of each observation in the frame. This model runs the MLLib implementation of Random Forest. During training, the decision trees are trained in parallel. During prediction, the average over-all tree's predicted value is the predicted value of the random forest.

def train(frame,
          value_column,
          observation_columns,
          num_trees = 1,
          impurity = "variance",
          max_depth = 4,
          max_bins = 100,
          seed = None,
          categorical_features_info = None,
          feature_subset_category = None):
    """
    Creates a Random Forest Regressor Model by training on the given frame

    Parameters
    ----------

    :param frame: (Frame) frame frame of training data
    :param value_column: (str) Column name containing the value for each observation
    :param observation_columns: (list(str)) Column(s) containing the observations
    :param num_trees: (int) Number of tress in the random forest. Default is 1
    :param impurity: (str) Criterion used for information gain calculation. Default value is "variance".
    :param max_depth: (int) Maximum depth of the tree. Default is 4
    :param max_bins: (int) Maximum number of bins used for splitting features. Default is 100
    :param seed: (Optional(int)) Random seed for bootstrapping and choosing feature subsets. Default is a randomly chosen seed
    :param categorical_features_info: (Optional(Dict(Int -> Int)) Arity of categorical features. Entry (n-> k) indicates that feature 'n' is categorical
                                   with 'k' categories indexed from 0:{0,1,...,k-1}
    :param feature_subset_category: (Optional(str)) Number of features to consider for splits at each node.
                                 Supported values "auto","all","sqrt","log2","onethird".
                                 If "auto" is set, this is based on num_trees: if num_trees == 1, set to "all"
                                 ; if num_trees > 1, set to "onethird"

    :return: (RandomForestRegressorModel) The trained random forest regressor model

    Notes
    -----
    Random Forest is a supervised ensemble learning algorithm used to perform regression. A Random Forest
    Regressor model is initialized, trained on columns of a frame, and used to predict the value of each
    observation in the frame. This model runs the MLLib implementation of Random Forest. During training,
    the decision trees are trained in parallel. During prediction, the average over-all tree's predicted
    value is the predicted value of the random forest.

    """
    if frame is None:
        raise ValueError("frame cannot be None")

    tc = frame._tc
    _scala_obj = get_scala_obj(tc)
    seed = int(os.urandom(2).encode('hex'), 16) if seed is None else seed
    scala_model = _scala_obj.train(frame._scala,
                                   value_column,
                                   tc.jutils.convert.to_scala_list_string(observation_columns),
                                   num_trees,
                                   impurity,
                                   max_depth,
                                   max_bins,
                                   seed,
                                   __get_categorical_features_info(tc, categorical_features_info),
                                   tc.jutils.convert.to_scala_option(feature_subset_category))

    return RandomForestRegressorModel(tc, scala_model)

Classes

class RandomForestRegressorModel

A trained Random Forest Regressor model

Example:
>>> frame = tc.frame.create([[1,19.8446136104,2.2985856384],[1,16.8973559126,2.6933495054],
...                          [1,5.5548729596,2.7777687995],[0,46.1810010826,3.1611961917],
...                          [0,44.3117586448,3.3458963222],[0,34.6334526911,3.6429838715]],
...                          [('Class', int), ('Dim_1', float), ('Dim_2', float)])

>>> frame.inspect()
[#]  Class  Dim_1          Dim_2
=======================================
[0]      1  19.8446136104  2.2985856384
[1]      1  16.8973559126  2.6933495054
[2]      1   5.5548729596  2.7777687995
[3]      0  46.1810010826  3.1611961917
[4]      0  44.3117586448  3.3458963222
[5]      0  34.6334526911  3.6429838715

>>> model = tc.models.regression.random_forest_regressor.train(frame,
...                                                                'Class',
...                                                                ['Dim_1', 'Dim_2'],
...                                                                num_trees=1,
...                                                                impurity="variance",
...                                                                max_depth=4,
...                                                                max_bins=100)

>>> predict_frame = model.predict(frame, ['Dim_1', 'Dim_2'])

>>> predict_frame.inspect()
[#]  Class  Dim_1          Dim_2         predicted_value
========================================================
[0]      1  19.8446136104  2.2985856384                1.0
[1]      1  16.8973559126  2.6933495054                1.0
[2]      1   5.5548729596  2.7777687995                1.0
[3]      0  46.1810010826  3.1611961917                0.0
[4]      0  44.3117586448  3.3458963222                0.0
[5]      0  34.6334526911  3.6429838715                0.0

>>> model.save("sandbox/randomforestregressor")

>>> restored = tc.load("sandbox/randomforestregressor")

>>> restored.value_column == model.value_column
True

>>> restored.seed == model.seed
True

>>> set(restored.observation_columns) == set(model.observation_columns)
True

The trained model can also be exported to a .mar file, to be used with the scoring engine:

>>> canonical_path = model.export_to_mar("sandbox/rfRegressor.mar")
class RandomForestRegressorModel(PropertiesObject):
    """
    A trained Random Forest Regressor model

    Example
    -------

        >>> frame = tc.frame.create([[1,19.8446136104,2.2985856384],[1,16.8973559126,2.6933495054],
        ...                          [1,5.5548729596,2.7777687995],[0,46.1810010826,3.1611961917],
        ...                          [0,44.3117586448,3.3458963222],[0,34.6334526911,3.6429838715]],
        ...                          [('Class', int), ('Dim_1', float), ('Dim_2', float)])

        >>> frame.inspect()
        [#]  Class  Dim_1          Dim_2
        =======================================
        [0]      1  19.8446136104  2.2985856384
        [1]      1  16.8973559126  2.6933495054
        [2]      1   5.5548729596  2.7777687995
        [3]      0  46.1810010826  3.1611961917
        [4]      0  44.3117586448  3.3458963222
        [5]      0  34.6334526911  3.6429838715

        >>> model = tc.models.regression.random_forest_regressor.train(frame,
        ...                                                                'Class',
        ...                                                                ['Dim_1', 'Dim_2'],
        ...                                                                num_trees=1,
        ...                                                                impurity="variance",
        ...                                                                max_depth=4,
        ...                                                                max_bins=100)

        >>> predict_frame = model.predict(frame, ['Dim_1', 'Dim_2'])

        >>> predict_frame.inspect()
        [#]  Class  Dim_1          Dim_2         predicted_value
        ========================================================
        [0]      1  19.8446136104  2.2985856384                1.0
        [1]      1  16.8973559126  2.6933495054                1.0
        [2]      1   5.5548729596  2.7777687995                1.0
        [3]      0  46.1810010826  3.1611961917                0.0
        [4]      0  44.3117586448  3.3458963222                0.0
        [5]      0  34.6334526911  3.6429838715                0.0

        >>> model.save("sandbox/randomforestregressor")

        >>> restored = tc.load("sandbox/randomforestregressor")

        >>> restored.value_column == model.value_column
        True

        >>> restored.seed == model.seed
        True

        >>> set(restored.observation_columns) == set(model.observation_columns)
        True

    The trained model can also be exported to a .mar file, to be used with the scoring engine:

        >>> canonical_path = model.export_to_mar("sandbox/rfRegressor.mar")


    """

    def __init__(self, tc, scala_model):
        self._tc = tc
        tc.jutils.validate_is_jvm_instance_of(scala_model, get_scala_obj(tc))
        self._scala = scala_model

    @staticmethod
    def _from_scala(tc, scala_model):
        """Loads a random forest regressor model from a scala model"""
        return RandomForestRegressorModel(tc, scala_model)

    @property
    def value_column(self):
        """column containing the values used for model training"""
        return self._scala.valueColumn()

    @property
    def observation_columns(self):
        """observation columns used for model training"""
        return self._tc.jutils.convert.from_scala_seq(self._scala.observationColumns())

    @property
    def num_trees(self):
        """number of trees in the trained model"""
        return self._scala.numTrees()

    @property
    def impurity(self):
        """impurity value of the trained model"""
        return self._scala.impurity()

    @property
    def max_depth(self):
        """maximum depth of the trained model"""
        return self._scala.maxDepth()

    @property
    def max_bins(self):
        """maximum bins in the trained model"""
        return self._scala.maxBins()

    @property
    def seed(self):
        """seed used during training of the model"""
        return self._scala.seed()

    @property
    def categorical_features_info(self):
        """categorical feature dictionary used during model training"""
        s = self._tc.jutils.convert.from_scala_option(self._scala.categoricalFeaturesInfo())
        if s:
            return self._tc.jutils.convert.scala_map_to_python(s)
        return None

    @property
    def feature_subset_category(self):
        """feature subset category of the trained model"""
        return self._tc.jutils.convert.from_scala_option(self._scala.featureSubsetCategory())

    def predict(self, frame, columns=None):
        """
        Predict the values for the data points.

        Predict the values for a test frame using trained Random Forest Classifier model, and create a new frame revision
        with existing columns and a new predicted value's column.

        Parameters
        ----------

        :param frame: (Frame) A frame whose labels are to be predicted. By default, predict is run on the same columns
                      over which the model is trained.
        :param columns: (Optional(list[str])) Column(s) containing the observations whose labels are to be predicted.
                        By default, we predict the labels over columns the Random Forest model was trained on.
        :return: (Frame) A new frame consisting of the existing columns of the frame and a new column with predicted
                 value for each observation.
        """

        c = self.__columns_to_option(columns)
        from sparktk.frame.frame import Frame
        return Frame(self._tc,self._scala.predict(frame._scala, c))

    def __columns_to_option(self, c):
        if c is not None:
            c = self._tc.jutils.convert.to_scala_list_string(c)
        return self._tc.jutils.convert.to_scala_option(c)

    def save(self, path):
        """
        Save the trained model to path

        Parameters
        ----------

        :param path: (str) Path to save
        """
        self._scala.save(self._tc._scala_sc, path)

    def export_to_mar(self, path):
        """
        Exports the trained model as a model archive (.mar) to the specified path.

        Parameters
        ----------

        :param path: (str) Path to save the trained model
        :return: (str) Full path to the saved .mar file

        """

        if not isinstance(path, basestring):
            raise TypeError("path parameter must be a str, but received %s" % type(path))

        return self._scala.exportToMar(self._tc._scala_sc, path)

Ancestors (in MRO)

Instance variables

var categorical_features_info

categorical feature dictionary used during model training

var feature_subset_category

feature subset category of the trained model

var impurity

impurity value of the trained model

var max_bins

maximum bins in the trained model

var max_depth

maximum depth of the trained model

var num_trees

number of trees in the trained model

var observation_columns

observation columns used for model training

var seed

seed used during training of the model

var value_column

column containing the values used for model training

Methods

def __init__(

self, tc, scala_model)

def __init__(self, tc, scala_model):
    self._tc = tc
    tc.jutils.validate_is_jvm_instance_of(scala_model, get_scala_obj(tc))
    self._scala = scala_model

def export_to_mar(

self, path)

Exports the trained model as a model archive (.mar) to the specified path.

Parameters:
path(str):Path to save the trained model

Returns(str): Full path to the saved .mar file

def export_to_mar(self, path):
    """
    Exports the trained model as a model archive (.mar) to the specified path.
    Parameters
    ----------
    :param path: (str) Path to save the trained model
    :return: (str) Full path to the saved .mar file
    """
    if not isinstance(path, basestring):
        raise TypeError("path parameter must be a str, but received %s" % type(path))
    return self._scala.exportToMar(self._tc._scala_sc, path)

def predict(

self, frame, columns=None)

Predict the values for the data points.

Predict the values for a test frame using trained Random Forest Classifier model, and create a new frame revision with existing columns and a new predicted value's column.

Parameters:
frame(Frame):A frame whose labels are to be predicted. By default, predict is run on the same columns over which the model is trained.
columns(Optional(list[str])):Column(s) containing the observations whose labels are to be predicted. By default, we predict the labels over columns the Random Forest model was trained on.

Returns(Frame): A new frame consisting of the existing columns of the frame and a new column with predicted value for each observation.

def predict(self, frame, columns=None):
    """
    Predict the values for the data points.
    Predict the values for a test frame using trained Random Forest Classifier model, and create a new frame revision
    with existing columns and a new predicted value's column.
    Parameters
    ----------
    :param frame: (Frame) A frame whose labels are to be predicted. By default, predict is run on the same columns
                  over which the model is trained.
    :param columns: (Optional(list[str])) Column(s) containing the observations whose labels are to be predicted.
                    By default, we predict the labels over columns the Random Forest model was trained on.
    :return: (Frame) A new frame consisting of the existing columns of the frame and a new column with predicted
             value for each observation.
    """
    c = self.__columns_to_option(columns)
    from sparktk.frame.frame import Frame
    return Frame(self._tc,self._scala.predict(frame._scala, c))

def save(

self, path)

Save the trained model to path

Parameters:
path(str):Path to save
def save(self, path):
    """
    Save the trained model to path
    Parameters
    ----------
    :param path: (str) Path to save
    """
    self._scala.save(self._tc._scala_sc, path)

def to_dict(

self)

def to_dict(self):
    d = self._properties()
    d.update(self._attributes())
    return d

def to_json(

self)

def to_json(self):
    return json.dumps(self.to_dict())