sparktk.models.regression.linear_regression_test_metrics module
# vim: set encoding=utf-8
# Copyright (c) 2016 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from sparktk.propobj import PropertiesObject
class LinearRegressionTestMetrics(PropertiesObject):
"""
RegressionMetrics class used to hold the data returned from linear regression test
"""
def __init__(self, scala_result):
self._explained_variance = scala_result.explainedVariance()
self._mean_absolute_error = scala_result.meanAbsoluteError()
self._mean_squared_error = scala_result.meanSquaredError()
self._r2 = scala_result.r2()
self._root_mean_squared_error = scala_result.rootMeanSquaredError()
@property
def explained_variance(self):
"""The explained variance regression score"""
return self._explained_variance
@property
def mean_absolute_error(self):
"""The risk function corresponding to the expected value of the absolute error loss or l1-norm loss"""
return self._mean_absolute_error
@property
def mean_squared_error(self):
"""The risk function corresponding to the expected value of the squared error loss or quadratic loss"""
return self._mean_squared_error
@property
def r2(self):
"""The coefficient of determination"""
return self._r2
@property
def root_mean_squared_error(self):
"""The square root of the mean squared error"""
return self._root_mean_squared_error
Classes
class LinearRegressionTestMetrics
RegressionMetrics class used to hold the data returned from linear regression test
class LinearRegressionTestMetrics(PropertiesObject):
"""
RegressionMetrics class used to hold the data returned from linear regression test
"""
def __init__(self, scala_result):
self._explained_variance = scala_result.explainedVariance()
self._mean_absolute_error = scala_result.meanAbsoluteError()
self._mean_squared_error = scala_result.meanSquaredError()
self._r2 = scala_result.r2()
self._root_mean_squared_error = scala_result.rootMeanSquaredError()
@property
def explained_variance(self):
"""The explained variance regression score"""
return self._explained_variance
@property
def mean_absolute_error(self):
"""The risk function corresponding to the expected value of the absolute error loss or l1-norm loss"""
return self._mean_absolute_error
@property
def mean_squared_error(self):
"""The risk function corresponding to the expected value of the squared error loss or quadratic loss"""
return self._mean_squared_error
@property
def r2(self):
"""The coefficient of determination"""
return self._r2
@property
def root_mean_squared_error(self):
"""The square root of the mean squared error"""
return self._root_mean_squared_error
Ancestors (in MRO)
- LinearRegressionTestMetrics
- sparktk.propobj.PropertiesObject
- __builtin__.object
Instance variables
var explained_variance
The explained variance regression score
var mean_absolute_error
The risk function corresponding to the expected value of the absolute error loss or l1-norm loss
var mean_squared_error
The risk function corresponding to the expected value of the squared error loss or quadratic loss
var r2
The coefficient of determination
var root_mean_squared_error
The square root of the mean squared error
Methods
def __init__(
self, scala_result)
def __init__(self, scala_result):
self._explained_variance = scala_result.explainedVariance()
self._mean_absolute_error = scala_result.meanAbsoluteError()
self._mean_squared_error = scala_result.meanSquaredError()
self._r2 = scala_result.r2()
self._root_mean_squared_error = scala_result.rootMeanSquaredError()
def to_dict(
self)
def to_dict(self):
d = self._properties()
d.update(self._attributes())
return d
def to_json(
self)
def to_json(self):
return json.dumps(self.to_dict())