sparktk.models.logistic_regression_summary_table module
# vim: set encoding=utf-8
# Copyright (c) 2016 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from sparktk.propobj import PropertiesObject
class LogisticRegressionSummaryTable(PropertiesObject):
"""
LogisticRegressionSummaryTable holds the data returned from LogisticRegressionModel
"""
def __init__(self, tc, scala_result):
self._tc = tc
self._num_features = scala_result.numFeatures()
self._num_classes = scala_result.numClasses()
self._coefficients = self._tc.jutils.convert.scala_map_to_python(scala_result.coefficients())
self._degrees_freedom = self._tc.jutils.convert.scala_map_to_python(scala_result.degreesFreedom())
scala_option_frame = self._tc.jutils.convert.from_scala_option(scala_result.covarianceMatrix())
if scala_option_frame:
from sparktk.frame.frame import Frame
self._covariance_matrix = Frame(self._tc, scala_option_frame)
else:
self._covariance_matrix = None
scala_option_map = self._tc.jutils.convert.from_scala_option(scala_result.standardErrors())
if scala_option_map:
self._standard_errors = self._tc.jutils.convert.scala_map_to_python(scala_option_map)
else:
self._standard_errors = None
scala_option_map = self._tc.jutils.convert.from_scala_option(scala_result.waldStatistic())
if scala_option_map:
self._wald_statistic = self._tc.jutils.convert.scala_map_to_python(scala_option_map)
else:
self._wald_statistic = None
scala_option_map = self._tc.jutils.convert.from_scala_option(scala_result.pValue())
if scala_option_map:
self._p_value = self._tc.jutils.convert.scala_map_to_python(scala_option_map)
else:
self._p_value = None
@property
def num_features(self):
"""Number of features"""
return self._num_features
@property
def num_classes(self):
"""Number of classes"""
return self._num_classes
@property
def coefficients(self):
"""Model coefficients"""
return self._coefficients
@property
def degrees_freedom(self):
"""Degrees of freedom for model coefficients"""
return self._degrees_freedom
@property
def covariance_matrix(self):
"""Optional covariance matrix"""
return self._covariance_matrix
@property
def standard_errors(self):
"""Optional standard errors for model coefficients"""
return self._standard_errors
@property
def wald_statistic(self):
"""Optional Wald Chi-Squared statistic"""
return self._wald_statistic
@property
def p_value(self):
"""Optional p-values for the model coefficients"""
return self._p_value
Classes
class LogisticRegressionSummaryTable
LogisticRegressionSummaryTable holds the data returned from LogisticRegressionModel
class LogisticRegressionSummaryTable(PropertiesObject):
"""
LogisticRegressionSummaryTable holds the data returned from LogisticRegressionModel
"""
def __init__(self, tc, scala_result):
self._tc = tc
self._num_features = scala_result.numFeatures()
self._num_classes = scala_result.numClasses()
self._coefficients = self._tc.jutils.convert.scala_map_to_python(scala_result.coefficients())
self._degrees_freedom = self._tc.jutils.convert.scala_map_to_python(scala_result.degreesFreedom())
scala_option_frame = self._tc.jutils.convert.from_scala_option(scala_result.covarianceMatrix())
if scala_option_frame:
from sparktk.frame.frame import Frame
self._covariance_matrix = Frame(self._tc, scala_option_frame)
else:
self._covariance_matrix = None
scala_option_map = self._tc.jutils.convert.from_scala_option(scala_result.standardErrors())
if scala_option_map:
self._standard_errors = self._tc.jutils.convert.scala_map_to_python(scala_option_map)
else:
self._standard_errors = None
scala_option_map = self._tc.jutils.convert.from_scala_option(scala_result.waldStatistic())
if scala_option_map:
self._wald_statistic = self._tc.jutils.convert.scala_map_to_python(scala_option_map)
else:
self._wald_statistic = None
scala_option_map = self._tc.jutils.convert.from_scala_option(scala_result.pValue())
if scala_option_map:
self._p_value = self._tc.jutils.convert.scala_map_to_python(scala_option_map)
else:
self._p_value = None
@property
def num_features(self):
"""Number of features"""
return self._num_features
@property
def num_classes(self):
"""Number of classes"""
return self._num_classes
@property
def coefficients(self):
"""Model coefficients"""
return self._coefficients
@property
def degrees_freedom(self):
"""Degrees of freedom for model coefficients"""
return self._degrees_freedom
@property
def covariance_matrix(self):
"""Optional covariance matrix"""
return self._covariance_matrix
@property
def standard_errors(self):
"""Optional standard errors for model coefficients"""
return self._standard_errors
@property
def wald_statistic(self):
"""Optional Wald Chi-Squared statistic"""
return self._wald_statistic
@property
def p_value(self):
"""Optional p-values for the model coefficients"""
return self._p_value
Ancestors (in MRO)
- LogisticRegressionSummaryTable
- sparktk.propobj.PropertiesObject
- __builtin__.object
Instance variables
var coefficients
Model coefficients
var covariance_matrix
Optional covariance matrix
var degrees_freedom
Degrees of freedom for model coefficients
var num_classes
Number of classes
var num_features
Number of features
var p_value
Optional p-values for the model coefficients
var standard_errors
Optional standard errors for model coefficients
var wald_statistic
Optional Wald Chi-Squared statistic
Methods
def __init__(
self, tc, scala_result)
def __init__(self, tc, scala_result):
self._tc = tc
self._num_features = scala_result.numFeatures()
self._num_classes = scala_result.numClasses()
self._coefficients = self._tc.jutils.convert.scala_map_to_python(scala_result.coefficients())
self._degrees_freedom = self._tc.jutils.convert.scala_map_to_python(scala_result.degreesFreedom())
scala_option_frame = self._tc.jutils.convert.from_scala_option(scala_result.covarianceMatrix())
if scala_option_frame:
from sparktk.frame.frame import Frame
self._covariance_matrix = Frame(self._tc, scala_option_frame)
else:
self._covariance_matrix = None
scala_option_map = self._tc.jutils.convert.from_scala_option(scala_result.standardErrors())
if scala_option_map:
self._standard_errors = self._tc.jutils.convert.scala_map_to_python(scala_option_map)
else:
self._standard_errors = None
scala_option_map = self._tc.jutils.convert.from_scala_option(scala_result.waldStatistic())
if scala_option_map:
self._wald_statistic = self._tc.jutils.convert.scala_map_to_python(scala_option_map)
else:
self._wald_statistic = None
scala_option_map = self._tc.jutils.convert.from_scala_option(scala_result.pValue())
if scala_option_map:
self._p_value = self._tc.jutils.convert.scala_map_to_python(scala_option_map)
else:
self._p_value = None
def to_dict(
self)
def to_dict(self):
d = self._properties()
d.update(self._attributes())
return d
def to_json(
self)
def to_json(self):
return json.dumps(self.to_dict())