sparktk.frame.ops.quantiles module
# vim: set encoding=utf-8
# Copyright (c) 2016 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
def quantiles(self, column_name, quantiles):
"""
Returns a new frame with Quantiles and their values.
Parameters
----------
:param column_name: (str) The column to calculate quantiles on
:param quantiles: (List[float]) The quantiles being requested
:return: (Frame) A new frame with two columns (float64): requested Quantiles and their respective values.
Calculates quantiles on the given column.
Examples
--------
Consider Frame *my_frame*, which accesses a frame that contains a single
column *final_sale_price*:
>>> my_frame.inspect()
[#] final_sale_price
=====================
[0] 100
[1] 250
[2] 95
[3] 179
[4] 315
[5] 660
[6] 540
[7] 420
[8] 250
[9] 335
To calculate 10th, 50th, and 100th quantile:
>>> quantiles_frame = my_frame.quantiles('final_sale_price', [10, 50, 100])
[===Job Progress===]
A new Frame containing the requested Quantiles and their respective values
will be returned:
>>> quantiles_frame.inspect()
[#] Quantiles final_sale_price_QuantileValue
==============================================
[0] 10.0 95.0
[1] 50.0 250.0
[2] 100.0 660.0
"""
from sparktk.frame.frame import Frame
return Frame(self._tc, self._scala.quantiles(column_name, self._tc.jutils.convert.to_scala_list_double(quantiles)))
Functions
def quantiles(
self, column_name, quantiles)
Returns a new frame with Quantiles and their values.
Parameters:
column_name | (str): | The column to calculate quantiles on |
quantiles | (List[float]): | The quantiles being requested |
Returns | (Frame): | A new frame with two columns (float64): requested Quantiles and their respective values. |
Calculates quantiles on the given column.
Examples:
Consider Frame my_frame, which accesses a frame that contains a single column final_sale_price:
>>> my_frame.inspect()
[#] final_sale_price
=====================
[0] 100
[1] 250
[2] 95
[3] 179
[4] 315
[5] 660
[6] 540
[7] 420
[8] 250
[9] 335
To calculate 10th, 50th, and 100th quantile:
>>> quantiles_frame = my_frame.quantiles('final_sale_price', [10, 50, 100])
[===Job Progress===]
A new Frame containing the requested Quantiles and their respective values will be returned:
quantiles_frame.inspect() [#] Quantiles final_sale_price_QuantileValue ============================================== [0] 10.0 95.0 [1] 50.0 250.0 [2] 100.0 660.0
def quantiles(self, column_name, quantiles):
"""
Returns a new frame with Quantiles and their values.
Parameters
----------
:param column_name: (str) The column to calculate quantiles on
:param quantiles: (List[float]) The quantiles being requested
:return: (Frame) A new frame with two columns (float64): requested Quantiles and their respective values.
Calculates quantiles on the given column.
Examples
--------
Consider Frame *my_frame*, which accesses a frame that contains a single
column *final_sale_price*:
>>> my_frame.inspect()
[#] final_sale_price
=====================
[0] 100
[1] 250
[2] 95
[3] 179
[4] 315
[5] 660
[6] 540
[7] 420
[8] 250
[9] 335
To calculate 10th, 50th, and 100th quantile:
>>> quantiles_frame = my_frame.quantiles('final_sale_price', [10, 50, 100])
[===Job Progress===]
A new Frame containing the requested Quantiles and their respective values
will be returned:
>>> quantiles_frame.inspect()
[#] Quantiles final_sale_price_QuantileValue
==============================================
[0] 10.0 95.0
[1] 50.0 250.0
[2] 100.0 660.0
"""
from sparktk.frame.frame import Frame
return Frame(self._tc, self._scala.quantiles(column_name, self._tc.jutils.convert.to_scala_list_double(quantiles)))