sparktk.frame.ops.matrix_covariance_matrix module
# vim: set encoding=utf-8
# Copyright (c) 2016 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
def matrix_covariance_matrix(self, matrix_column_name):
"""
Compute the Covariance Matrix of matrices stored in a frame
Parameters
----------
:param matrix_column_name: Name of the column to compute the covariance matrix on
:return: (Frame) returns the frame with a new column storing the covariance matrix for the corresponding matrix
Calculate the covariance matrix for each matrix in column 'matrix_column_name' of a frame using the following:
Element (i,j) of the covariance matrix for a given matrix X is computed as: ((Xi - Mi)(Xj - Mj))
where Mi is the mean
Examples
--------
>>> from sparktk import dtypes
>>> data = [[1, [[1,2,3,5],[2,3,5,6],[4,6,7,3],[8,9,2,4]]]]
>>> schema = [('id', int),('pixeldata', dtypes.matrix)]
>>> my_frame = tc.frame.create(data, schema)
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
Compute the covariance matrix for the matrices in 'pixeldata' column of the frame
>>> my_frame.matrix_covariance_matrix('pixeldata')
A new column gets added to the existing frame storing the covariance matrix
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
[#] CovarianceMatrix_pixeldata
============================================================
[0] [[ 2.91666667 3. -1. -3.75 ]
[ 3. 3.33333333 -0.33333333 -5. ]
[ -1. -0.33333333 3.33333333 -1. ]
[ -3.75 -5. -1. 10.91666667]]
"""
self._scala.matrixCovarianceMatrix(matrix_column_name)
Functions
def matrix_covariance_matrix(
self, matrix_column_name)
Compute the Covariance Matrix of matrices stored in a frame
Parameters:
matrix_column_name: | Name of the column to compute the covariance matrix on |
Returns | (Frame): | returns the frame with a new column storing the covariance matrix for the corresponding matrix |
Calculate the covariance matrix for each matrix in column 'matrix_column_name' of a frame using the following:
Element (i,j) of the covariance matrix for a given matrix X is computed as: ((Xi - Mi)(Xj - Mj)) where Mi is the mean
Examples:
>>> from sparktk import dtypes
>>> data = [[1, [[1,2,3,5],[2,3,5,6],[4,6,7,3],[8,9,2,4]]]]
>>> schema = [('id', int),('pixeldata', dtypes.matrix)]
>>> my_frame = tc.frame.create(data, schema)
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
Compute the covariance matrix for the matrices in 'pixeldata' column of the frame
>>> my_frame.matrix_covariance_matrix('pixeldata')
A new column gets added to the existing frame storing the covariance matrix
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
<BLANKLINE>
[#] CovarianceMatrix_pixeldata
============================================================
[0] [[ 2.91666667 3. -1. -3.75 ]
[ 3. 3.33333333 -0.33333333 -5. ]
[ -1. -0.33333333 3.33333333 -1. ]
[ -3.75 -5. -1. 10.91666667]]
def matrix_covariance_matrix(self, matrix_column_name):
"""
Compute the Covariance Matrix of matrices stored in a frame
Parameters
----------
:param matrix_column_name: Name of the column to compute the covariance matrix on
:return: (Frame) returns the frame with a new column storing the covariance matrix for the corresponding matrix
Calculate the covariance matrix for each matrix in column 'matrix_column_name' of a frame using the following:
Element (i,j) of the covariance matrix for a given matrix X is computed as: ((Xi - Mi)(Xj - Mj))
where Mi is the mean
Examples
--------
>>> from sparktk import dtypes
>>> data = [[1, [[1,2,3,5],[2,3,5,6],[4,6,7,3],[8,9,2,4]]]]
>>> schema = [('id', int),('pixeldata', dtypes.matrix)]
>>> my_frame = tc.frame.create(data, schema)
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
Compute the covariance matrix for the matrices in 'pixeldata' column of the frame
>>> my_frame.matrix_covariance_matrix('pixeldata')
A new column gets added to the existing frame storing the covariance matrix
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
[#] CovarianceMatrix_pixeldata
============================================================
[0] [[ 2.91666667 3. -1. -3.75 ]
[ 3. 3.33333333 -0.33333333 -5. ]
[ -1. -0.33333333 3.33333333 -1. ]
[ -3.75 -5. -1. 10.91666667]]
"""
self._scala.matrixCovarianceMatrix(matrix_column_name)